
THE NAS PARALLEL BENCHMARKS

D. H. Bailey1, E. Barszcz1, J. T. Barton1, D. S. Browning2, R. L. Carter, L.
Dagum2, R. A. Fatoohi2, P. O. Frederickson3, T. A. Lasinski1, R. S.

Schreiber3, H. D. Simon2, V. Venkatakrishnan2 and S. K. Weeratunga2

NAS Applied Research Branch
NASA Ames Research Center, Mail Stop T045-1

Mo�ett Field, CA 94035
Ref: Intl. Journal of Supercomputer Applications, vol. 5, no. 3 (Fall 1991),

pg. 66{73

Abstract

A new set of benchmarks has been developed for the performance

evaluation of highly parallel supercomputers. These benchmarks con-

sist of �ve \parallel kernel" benchmarks and three \simulated appli-

cation" benchmarks. Together they mimic the computation and data

movement characteristics of large scale computational
uid dynamics

applications.

The principal distinguishing feature of these benchmarks is their

\pencil and paper" speci�cation | all details of these benchmarks

are speci�ed only algorithmically. In this way many of the di�cul-

ties associated with conventional benchmarking approaches on highly

parallel systems are avoided.

1This author is an employee of NASA Ames Research Center
2This author is an employee of Computer Sciences Corporation. This work is supported

through NASA Contract NAS 2-12961.
3This author is an employee of the Research Institute for Advanced Computer Science

(RIACS). This work is supported by the NAS Systems Division via Cooperative Agreement
NCC 2-387 between NASA and the Universities Space Research Association.

1 Introduction

The Numerical Aerodynamic Simulation (NAS) Program, which is based at
NASA Ames Research Center, is a large scale e�ort to advance the state of
computational aerodynamics. Speci�cally, the NAS organization aims \to
provide the Nation's aerospace research and development community by the
year 2000 a high-performance, operational computing system capable of sim-
ulating an entire aerospace vehicle system within a computing time of one to
several hours" ([4], page 3). The successful solution of this \grand challenge"
problem will require the development of computer systems that can perform
the required complex scienti�c computations at a sustained rate nearly one
thousand times greater than current generation supercomputers can now
achieve. The architecture of computer systems able to achieve this level of
performance will likely be dissimilar to the shared memory multiprocessing
supercomputers of today. While no consensus yet exists on what the design
will be, it is likely that the system will consist of at least 1,000 processors
computing in parallel.

Highly parallel systems with computing power roughly equivalent to tradi-
tional shared memorymultiprocessors exist today. Unfortunately, for various
reasons, the performance evaluation of these systems on comparable types of
scienti�c computations is very di�cult. Little relevant data is available for
the performance of algorithms of interest to the computational aerophysics
community on many currently available parallel systems. Benchmarking and
performance evaluation of such systems has not kept pace with advances in
hardware, software and algorithms. In particular, there is as yet no gener-
ally accepted benchmark program or even a benchmark strategy for these
systems.

The popular \kernel" benchmarks that have been used for traditional
vector supercomputers, such as the Livermore Loops [12], the LINPACK
benchmark [9, 10] and the original NAS Kernels [7], are clearly inappropriate
for the performance evaluation of highly parallel machines. First of all, the
tuning restrictions of these benchmarks rule out many widely used parallel
extensions. More importantly, the computation and memory requirements
of these programs do not do justice to the vastly increased capabilities of the
new parallel machines, particularly those systems that will be available by
the mid-1990s.

On the other hand, a full scale scienti�c application is similarly unsuitable.

1

First of all, porting a large program to a new parallel computer architecture
requires a major e�ort, and it is usually hard to justify a major research
task simply to obtain a benchmark number. For that reason we believe
that the otherwise very successful PERFECT Club benchmark [11] is not
suitable for highly parallel systems. This is demonstrated by only very sparse
performance results for parallel machines in the recent reports [13, 14, 8].

Alternatively, an application benchmark could assume the availability of
automatic software tools for transforming \dusty deck" source into e�cient
parallel code on a variety of systems. However, such tools do not exist today,
and many scientists doubt that they will ever exist across a wide range of
architectures.

Some other considerations for the development of a meaningful bench-
mark for a highly parallel supercomputer are the following:

� Advanced parallel systems frequently require new algorithmic and soft-
ware approaches, and these new methods are often quite di�erent from
the conventional methods implemented in source code for a sequential
or vector machine.

� Benchmarks must be \generic" and should not favor any particular
parallel architecture. This requirement precludes the usage of any
architecture-speci�c code, such as message passing code.

� The correctness of results and performance �gures must be easily veri-
�able. This requirement implies that both input and output data sets
must be kept very small. It also implies that the nature of the compu-
tation and the expected results must be speci�ed in great detail.

� The memory size and run time requirements must be easily adjustable
to accommodate new systems with increased power.

� The benchmark must be readily distributable.

In our view, the only benchmarking approach that satis�es all of these
constraints is a \paper and pencil" benchmark. The idea is to specify a set
of problems only algorithmically. Even the input data must be speci�ed only
on paper. Naturally, the problem has to be speci�ed in su�cient detail that
a unique solution exists, and the required output has to be brief yet detailed

2

enough to certify that the problem has been solved correctly. The person
or persons implementing the benchmarks on a given system are expected
to solve the various problems in the most appropriate way for the speci�c
system. The choice of data structures, algorithms, processor allocation and
memory usage are all (to the extent allowed by the speci�cation) left open to
the discretion of the implementer. Some extension of Fortran or C is required,
and reasonable limits are placed on the usage of assembly code and the like,
but otherwise programmers are free to utilize language constructs that give
the best performance possible on the particular system being studied.

To this end, we have devised a number of relatively simple \kernels",
which are speci�ed completely in [6]. However, kernels alone are insu�cient
to completely assess the performance potential of a parallel machine on real
scienti�c applications. The chief di�culty is that a certain data structure
may be very e�cient on a certain system for one of the isolated kernels, and
yet this data structure would be inappropriate if incorporated into a larger
application. In other words, the performance of a real computational
uid
dynamics (CFD) application on a parallel system is critically dependent on
data motion between computational kernels. Thus we consider the complete
reproduction of this data movement to be of critical importance in a bench-
mark.

Our benchmark set therefore consists of two major components: �ve par-
allel kernel benchmarks and three simulated application benchmarks. The
simulated application benchmarks combine several computations in a man-
ner that resembles the actual order of execution in certain important CFD
application codes. This is discussed in more detail in [6].

We feel that this benchmark set successfully addresses many of the prob-
lems associated with benchmarking parallel machines. Although we do not
claim that this set is typical of all scienti�c computing, it is based on the
key components of several large aeroscience applications used by scientists on
supercomputers at NASA Ames Research Center. These benchmarks will be
used by the Numerical Aerodynamic Simulation (NAS) Program to evaluate
the performance of parallel computers.

3

2 Benchmark Rules

2.1 De�nitions

In the following, the term \processor" is de�ned as a hardware unit capable
of integer and
oating point computation. The \local memory" of a processor
refers to randomly accessible memory with an access time (latency) of less
than one microsecond. The term \main memory" refers to the combined local
memory of all processors. This includes any memory shared by all processors
that can be accessed by each processor in less than one microsecond. The
term \mass storage" refers to non-volatile randomly accessible storage media
that can be accessed by at least one processor within forty milliseconds. A
\processing node" is de�ned as a hardware unit consisting of one or more
processors plus their local memory, which is logically a single unit on the
network that connects the processors.

The term \computational nodes" refers to those processing nodes pri-
marily devoted to high-speed
oating point computation. The term \ser-
vice nodes" refers to those processing nodes primarily devoted to system
operations, including compilation, linking and communication with external
computers over a network.

2.2 General Rules

Implementations of these benchmarks must be based on either Fortran-77 or
C, although a wide variety of parallel extensions are allowed. This require-
ment stems from the observation that Fortran and C are the most commonly
used programming languages by the scienti�c parallel computing community
at the present time. If in the future other languages gain wide acceptance
in this community, they will be considered for inclusion in this group. As-
sembly language and other low-level languages and constructs may not be
used, except that certain speci�c vendor-supported assembly-coded library
routines may be called (see section 2.3).

We are of the opinion that such language restrictions are necessary, be-
cause otherwise considerable e�ort would be made by benchmarkers in low-
level or assembly-level coding. Then the benchmark results would tend to
re
ect the amount of programming resources available to the benchmarking
organization, rather than the fundamental merits of the parallel system. Cer-

4

tainly the mainstream scientists that these parallel computers are intended to
serve will be coding applications at the source level, almost certainly in For-
tran C, and thus these benchmarks are designed to measure the performance
that can be expected from such code.

Accordingly, the following rules must be observed in any implementations
of the NAS Parallel Benchmarks:

� All
oating point operations must be performed using 64-bit
oating
point arithmetic.

� All benchmarks must be coded in either Fortran-77 [1] or C [3], with
certain approved extensions.

� Implementation of the benchmarks may not mix Fortran-77 and C code
| one or the other must be used.

� Any extension of Fortran-77 that is in the Fortran-90 draft dated June
1990 or later [2] is allowed.

� Any extension of Fortran-77 that is in the Parallel Computer Fortran
(PCF) draft dated March 1990 or later [5] is allowed.

� Any language extension or library routine that is employed in any of
the benchmarks must be supported by the vendor and available to all
users.

� Subprograms and library routines not written in Fortran or C may only
perform certain functions, as indicated on the next section.

� All rules apply equally to subroutine calls, language extensions and
compiler directives (i.e. special comments).

2.3 Allowable Language Extensions and Library Rou-

tines

The following language extensions and library routines are permitted:

� Constructs that indicate sections of code that can be executed in par-
allel or loops that can be distributed among di�erent computational
nodes.

5

� Constructs that specify the allocation and organization of data among
or within computational nodes.

� Constructs that communicate data between processing nodes.

� Constructs that communicate data between the computational nodes
and service nodes.

� Constructs that rearrange data stored in multiple computational nodes,
including constructs to perform indirect addressing and array transpo-
sitions.

� Constructs that synchronize the action of di�erent computational nodes.

� Constructs that initialize for a data communication or synchronization
operation that will be performed or completed later.

� Constructs that perform high-speed input or output operations between
main memory and the mass storage system.

� Constructs that perform any of the following array reduction opera-
tions on an array either residing within a single computational node or
distributed among multiple nodes: +;�, MAX, MIN, AND, OR, XOR.

� Constructs that combine communication between nodes with one of
the operations listed in the previous item.

� Constructs that perform any of the following computational opera-
tions on arrays either residing within a single computational node
or distributed among multiple nodes: dense matrix-matrix multipli-
cation, dense matrix-vector multiplication and one-dimensional, two-
dimensional or three-dimensional fast Fourier transforms. Such rou-
tines must be callable with general array dimensions.

3 The Benchmarks: A Condensed Overview

After an evaluation of a number of large scale CFD and computational
aerosciences applications on the NAS supercomputers at NASA Ames, �ve
medium-sized computational problems were selected as the \parallel kernels".

6

In addition to these problems, three di�erent implicit solution schemes were
added to the benchmark set. These schemes are representative of CFD codes
currently in use at NASA Ames Research Center in that they mimic the
computational activities and data motions typical of real CFD applications.
They do not include the typical pre- and postprocessing of real applications,
nor do they include I/O. Boundary conditions are also handled in a greatly
simpli�ed manner. For a detailed discussion on the di�erences between the
simulated application benchmarks and real CFD applications, see Chapter 3
of [6].

Even the �ve parallel kernel benchmarks involve substantially larger com-
putations than many previous benchmarks, such as the Livermore Loops or
Linpack, and therefore they are more appropriate for the evaluation of par-
allel machines. They are su�ciently simple that they can be implemented
on a new system without unreasonable e�ort and delay. The three simu-
lated application benchmarks require somewhat more e�ort to implement
but constitute a rigorous test of the usability of a parallel system to perform
state-of-the-art CFD computations.

3.1 The Eight Benchmark Problems

The following gives an overview of the benchmarks. The �rst �ve are the
parallel kernel benchmarks, and the last three are the simulated application
benchmarks. Space does not permit a complete description for all of these.
A detailed description of these benchmark problems is given in [6].

EP: An \embarrassingly parallel" kernel, which evaluates an integral by
means of pseudorandom trials. This kernel, in contrast to others in the
list, requires virtually no interprocessor communication.

MG: A simpli�ed multigrid kernel. This requires highly structured long
distance communication and tests both short and long distance data
communication.

CG: A conjugate gradient method is used to compute an approximation to
the smallest eigenvalue of a large, sparse, symmetric positive de�nite
matrix. This kernel is typical of unstructured grid computations in that
it tests irregular long distance communication, employing unstructured
matrix vector multiplication.

7

FT: A 3-D partial di�erential equation solution using FFTs. This kernel
performs the essence of many \spectral" codes. It is a rigorous test of
long-distance communication performance.

IS: A large integer sort. This kernel performs a sorting operation that is
important in \particle method" codes. It tests both integer computa-
tion speed and communication performance.

LU: A regular-sparse, block (5 � 5) lower and upper triangular system so-
lution. This problem represents the computations associated with the
implicit operator of a newer class of implicit CFD algorithms, typi-
�ed at NASA Ames by the code \INS3D-LU". This problem exhibits
a somewhat limited amount of parallelism compared to the next two.

SP: Solution of multiple, independent systems of non diagonally dominant,
scalar, pentadiagonal equations. SP and the following problem BT are
representative of computations associated with the implicit operators of
CFD codes such as \ARC3D" at NASA Ames. SP and BT are similar
in many respects, but there is a fundamental di�erence with respect to
the communication to computation ratio.

BT: Solution of multiple, independent systems of non diagonally dominant,
block tridiagonal equations with a (5 � 5) block size.

3.2 The Embarrassingly Parallel Benchmark

In order to give the reader a
avor of the problem descriptions in [6], a
detailed de�nition will be given for the �rst problem, the \embarrassingly
parallel" benchmark:

Set n = 228 and s = 271828183. Generate the pseudorandom
oating
point values rj in the interval (0, 1) for 1 � j � 2n using the scheme
described below. Then for 1 � j � n set xj = 2r2j�1 � 1 and yj = 2r2j � 1.
Thus xj and yj are uniformly distributed on the interval (�1; 1).

Next set k = 0, and beginning with j = 1, test to see if tj = x2j + y2j � 1.
If not, reject this pair and proceed to the next j. If this inequality holds,

then set k k + 1; Xk = xj

q
(�2 log tj)=tj and Yk = yj

q
(�2 log tj)=tj,

where log denotes the natural logarithm. Then Xk and Yk are independent

8

Gaussian deviates with mean zero and variance one. Approximately n�=4
pairs will be constructed in this manner.

Finally, for 0 � l � 9 tabulate Ql as the count of the pairs (Xk; Yk) that
lie in the square annulus l � max(jXkj; jYkj) < l + 1, and output the ten Ql

counts. Each of the ten Ql counts must agree exactly with reference values.
The 2n uniform pseudorandom numbers rj mentioned above are to be

generated according to the following scheme: Set a = 513 and let x0 = s be
the speci�ed initial \seed". Generate the integers xk for 1 � k � 2n using
the linear congruential recursion

xk+1 = axk (mod 246)

and return the numbers rk = 2�46xk as the results. Observe that 0 < rk < 1
and the rk are very nearly uniformly distributed on the unit interval.

An important feature of this pseudorandom number generator is that any
particular value xk of the sequence can be computed directly from the initial
seed s by using the binary algorithm for exponentiation, taking remainders
modulo 246 after each multiplication. The importance of this property for
parallel processing is that numerous separate segments of a single, repro-
ducible sequence can be generated on separate processors of a multiprocessor
system. Many other widely used schemes for pseudorandom number genera-
tion do not possess this important property.

Additional information and references for this benchmark problem are
given in [6].

4 Sample Codes

The intent of the NAS Parallel Benchmarks report is to completely specify
the computation to be carried out. Theoretically, a complete implementa-
tion, including the generation of the correct input data, could be produced
from the information in this paper. However, the developers of these bench-
marks are aware of the di�culty and time required to generate a correct
implementation from scratch in this manner. Furthermore, despite several
reviews, ambiguities in the technical paper may exist that could delay im-
plementations.

In order to reduce these di�culties and to aid the benchmarking specialist,
Fortran-77 computer programs implementing the benchmarks are available.

9

These codes are to be considered examples of how the problems could be
solved on a single processor system, rather than statements of how they
should be solved on an advanced parallel system. The sample codes actually
solve scaled down versions of the benchmarks that can be run on many
current generation workstations. Instructions are supplied in comments in
the source code on how to scale up the program parameters to the full size
benchmark speci�cations.

These programs, as well as the benchmark document itself, are available
from the following address: Applied Research Branch, NAS Systems Di-
vision, Mail Stop T045-1, NASA Ames Research Center, Mo�ett Field, CA
94035, attn: NAS Parallel Benchmark Codes. The sample codes are provided
on Macintosh
oppy disks and contain the Fortran source codes, \ReadMe"
�les, input data �les, and reference output data �les for correct implemen-
tations of the benchmark problems. These codes have been validated on
a number of computer systems ranging from conventional workstations to
supercomputers.

Table 1 lists approximate run times and memory requirements of the
sample code problems, based one processor Cray Y-MP implementations.
Table 2 contains similar information for the full-sized benchmark problems.
The unit \Mw" in tables 1 and 2 refers to one million 64-bit words. Note that
performance in MFLOPS is meaningless for the integer sort (IS) benchmark
and is therefore not given. An explanation of the entries in the problem size
column can be found in the corresponding sections describing the benchmarks
in [6].

5 Submission of Benchmark Results

It should be emphasized again that the sample codes described in section
4 are not the benchmark codes, but only implementation aids. For the ac-
tual benchmarks, the sample codes must be scaled to larger problem sizes.
The sizes of the current benchmarks were chosen so that implementations
are possible on currently available supercomputers. As parallel computer
technology progresses, future releases of these benchmarks will specify larger
problem sizes.

The authors and developers of these benchmarks encourage submission of
performance results for the problems listed in Table 2. Periodic publication

10

Table 1: NAS Parallel Benchmarks Sample Codes. (Times and
MFLOPS for one processor of the Cray Y-MP)

Benchmark code Problem Memory Time MFLOPS
Size (Mw) (sec)

Embarrassingly parallel (EP) 224 0.1 11.6 120
Multigrid (MG) 323 0.1 0.1 128
Conjugate gradient (CG) � 105 0.6 1.2 63
3-D FFT PDE (FT) 643 2.0 1.2 160
Integer sort (IS) 216 0.3 0.2 NA
LU solver (LU) 123 0.3 3.5 28
Pentadiagonal solver (SP) 123 0.2 7.2 24
Block tridiagonal solver (BT) 123 0.3 7.2 34

Table 2: NAS Parallel Benchmarks Problem Sizes. (Times and
MFLOPS for one processor of the Cray Y-MP)

Benchmark code Problem Memory Time MFLOPS
Size (Mw) (sec)

Embarrassingly parallel (EP) 228 1 151 147
Multigrid (MG) 2563 57 54 154
Conjugate gradient (CG) � 2 � 106 12 22 70
3-D FFT PDE (FT) 2562 � 128 59 39 192
Integer sort (IS) 223 26 21 NA
LU solver (LU) 643 8 344 189
Pentadiagonal solver (SP) 643 6 806 175
Block tridiagonal solver (BT) 643 6 923 192

11

of the submitted results is planned. Benchmark results should be submitted
to the Applied Research Branch, NAS Systems Division, Mail Stop T045-1,
NASA Ames Research Center, Mo�ett Field, CA 94035, attn: NAS Parallel
Benchmark Results. A complete submission of results should include the
following:

� A detailed description of the hardware and software con�guration used
for the benchmark runs.

� A description of the implementation and algorithmic techniques used.

� Source listings of the benchmark codes.

� Output listings from the benchmarks.

6 Acknowledgments

The conception, planning, execution, programming and authorship of the
NAS Parallel Benchmarks was truly a team e�ort, with signi�cant contribu-
tions by a number of persons. Thomas Lasinski, chief of the NAS Applied
Research Branch (RNR), and John Barton of the NAS System Development
Branch (RND), provided overall direction and management of the project.
David Bailey and Horst Simon edited the benchmark document and worked
with others in the development and implementation of the benchmarks. Eric
Barszcz of RNR assisted in the implementation of both the multigrid and
the simulated application benchmarks. David Browning and Russell Carter
of RND reviewed all problem de�nitions and sample codes, as well as con-
tributed some text to this paper. Leonardo Dagum of RNR developed the
integer sort benchmark. Rod Fatoohi of RNR assisted in the development and
implementation of the simulated application benchmarks. Paul Frederickson
of RIACS developed the multigrid benchmark and worked with Bailey on the
embarrassingly parallel and 3-D FFT PDE benchmarks. Rob Schreiber of
RIACS developed the conjugate gradient benchmark and worked with Simon
on its implementation. V. Venkatakrishnan of RNR assisted in the implemen-
tation of the simulated application benchmarks. Finally, Sisira Weeratunga
of RNR was responsible for the overall design of the simulated application
benchmarks and also for a major portion of their implementation.

12

References

[1] American National Standard Programming Language Fortran X3.9-

1978. American National Standards Institute, 1430 Broadway, New
York, NY, 10018, 1990.

[2] Draft Proposed Fortran 90 ANSI Standard X3J11.159 { 1989. American
National Standards Institute, 1430 Broadway, New York, NY, 10018,
1990.

[3] Draft Proposed C ANSI Standard X3J3 { S8115. American National
Standards Institute, 1430 Broadway, New York, NY, 10018, 1990.

[4] Numerical Aerodynamic Simulation Program Plan. NAS Systems Divi-
sion, NASA Ames Research Center, October 1988.

[5] PCF Fortran Extensions { Draft Document, Revision 2.11. Parallel
Computing Forum(PCF), c/o Kuck and Associates, 1906 Fox Drive,
Champaign, Illinois 61820, March 1990.

[6] D. Bailey, J. Barton, T. Lasinski, and H. Simon, eds. The NAS Par-

allel Benchmarks. Technical Report RNR-91-02, NASA Ames Research
Center, Mo�ett Field, CA 94035, January 1991.

[7] D. Bailey and J. Barton. The NAS Kernel Benchmark Program. Tech-
nical Report 86711, NASA Ames Research Center, Mo�ett Field, Cali-
fornia, August 1985.

[8] G. Cybenko, L. Kipp, L. Pointer, and D. Kuck. Supercomputer Perfor-

mance Evaluation and the Perfect Benchmarks. Technical Report 965,
CSRD, Univ. of Illinois, Urbana, Illinois, March 1990.

[9] J. Dongarra. The LINPACK Benchmark: An Explanation. SuperCom-

puting, 10 { 14, Spring 1988.

[10] J. Dongarra. Performance of Various Computers Using Standard Linear

Equations Software in a Fortran Environment. Technical Report MC-
SRD 23, Argonne National Laboratory, March 1988.

13

[11] M. Berry et al. The Perfect Club Benchmarks: E�ective Performance
Evaluation of Supercomputers. The International Journal of Supercom-

puter Applications, 3:5 { 40, 1989.

[12] F. McMahon. The Livermore Fortran Kernels: A Computer Test of

the Numerical Performance Range. Technical Report UCRL - 53745,
Lawrence Livermore National Laboratory, Livermore, California, De-
cember 1986.

[13] L. Pointer. PERFECT Report 1. Technical Report 896, CSRD, Univ.
of Illinois, Urbana, Illinois, July 1989.

[14] L. Pointer. PERFECT Report 2: Performance Evaluation for Cost-

E�ective Transformations. Technical Report 964, CSRD, Univ. of Illi-
nois, Urbana, Illinois, March 1990.

14

